题目内容
【题目】如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.
(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
【答案】(1)①直线AB的解析式为y=﹣x+3;理由见解析;②四边形ABCD是菱形,(2)四边形ABCD能是正方形,理由见解析.
【解析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(4,),进而得出A(4-t,+t),即:(4-t)(+t)=m,即可得出点D(4,8-),即可得出结论.
(1)①如图1,
∵m=4,
∴反比例函数为y=,当x=4时,y=1,
∴B(4,1),
当y=2时,
∴2=,
∴x=2,
∴A(2,2),
设直线AB的解析式为y=kx+b,
∴,
∴,
∴直线AB的解析式为y=-x+3;
②四边形ABCD是菱形,
理由如下:如图2,
由①知,B(4,1),
∵BD∥y轴,
∴D(4,5),
∵点P是线段BD的中点,
∴P(4,3),
当y=3时,由y=得,x=,
由y=得,x=,
∴PA=4-=,PC=-4=,
∴PA=PC,
∵PB=PD,
∴四边形ABCD为平行四边形,
∵BD⊥AC,
∴四边形ABCD是菱形;
(2)四边形ABCD能是正方形,
理由:当四边形ABCD是正方形,
∴PA=PB=PC=PD,(设为t,t≠0),
当x=4时,y==,
∴B(4,),
∴A(4-t,+t),
∴(4-t)(+t)=m,
∴t=4-,
∴点D的纵坐标为+2t=+2(4-)=8-,
∴D(4,8-),
∴4(8-)=n,
∴m+n=32.