题目内容
【题目】图①所示是边长为的大正方形中有一个边长为的小正方形.图②是由图①中阴影部分拼成的一个长方形.
(1)设图①中阴影部分的面积为,图②中阴影部分的面积为,请用含的式子表示: , ;(不必化简)
(2)以上结果可以验证的乘法公式是 ;
(3)利用(2)中得到的公式,计算:.
【答案】(1),(2) ;(3)1.
【解析】
(1)求出大正方形及小正方形的面积,作差即可得出阴影部分的面积;图2所示的长方形的长和宽分别为(a+b)、(a-b),由此可计算出面积;
(2)根据阴影部分的面积相等可得出平方差公式;
(3)先变形为,再利用平方差公式计算即可.
解:(1)大正方形的面积为a2,小正方形的面积为b2,
故图1阴影部分的面积值为a2-b2;
图2长方形的长和宽分别为(a+b)、(a-b),
故图2重拼的长方形的面积为(a+b)(a-b);
故答案为:a2-b2,(a+b)(a-b);
(2)比较上面的结果,都表示同一阴影的面积,它们相等,
即(a+b)(a-b)=a2-b2,可以验证平方差公式,这也是平方差公式的几何意义;
故答案为:(a+b)(a-b)=a2-b2;
(3)
.
练习册系列答案
相关题目
【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟) | 里程数(公里) | 车费(元) | |
小明 | 8 | 8 | 12 |
小刚 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?