题目内容
【题目】如图,四边形ABCD中,AD∥BC,AB=DC=AD,BD=AC,BD、AC相交于点O.
(1)求证:△ABO≌△DCO;
(2)写出图中所有与∠ACB相等的角.
【答案】(1)见解析;(2)图中与∠ACB相等的角是∠ABD、∠ADB、∠DAC、∠DBC、∠DCA,理由见解析.
【解析】
(1)先利用SSS证明△BDA≌△CAD,得∠ABD=∠DCA,再利用AAS证明△AOB≌△DOC.
(2)利用平行线的性质,全等三角形的性质,可得出与∠ACB相等的角度.
(1)证明:在△BDA和△CAD中
∴△BDA≌△CAD(SSS)
∴∠ABD=∠DCA,
在△AOB和△DOC
∴△AOB≌△DOC(AAS);
(2)图中与∠ACB相等的角是∠ABD、∠ADB、∠DAC、∠DBC、∠DCA,
理由:∵AD∥BC,
∴∠DAC=∠ACB,∠ADB=∠DBC,
∵AB=AD,AD=DC,
∴∠ABD=∠ADB,∠DAC=∠DCA,
∴∠ACB=∠DAC=∠DCA,
由(1)知,△AOB≌△DOC,
∴OA=OD,
∴∠DAC=∠ADB,
∴∠ACB=∠ABD=∠ADB=∠DAC=∠DBC=∠DCA,
即图中与∠ACB相等的角是∠ABD、∠ADB、∠DAC、∠DBC、∠DCA.
【题目】科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):
温度 /℃ | …… | -4 | -2 | 0 | 2 | 4 | 4.5 | …… |
植物每天高度增长量 /mm | …… | 41 | 49 | 49 | 41 | 25 | 19.75 | …… |
这些数据说明:植物每天高度增长量 关于温度 的函数是反比例函数、一次函数和二次函数中的一种.
(1)你认为是哪一种函数,并求出它的函数关系式;
(2)温度为多少时,这种植物每天高度增长量最大?
(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.
【题目】为了创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶替换原来的垃圾桶,,,三个小区所购买的数量和总价如表所示.
甲型垃圾桶数量(套) | 乙型垃圾桶数量(套) | 总价(元) | |
(1)问甲型垃圾桶、乙型垃圾桶的单价分别是每套多少元?
(2)求,的值.