题目内容
【题目】如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为( )
A. 0 B. 1 C. 2 D. 3
【答案】D
【解析】
根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.
∵∠BAC=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵BE、CE分别为∠ABC、∠ACB的平分线,
∴∠EBC= ∠ABC,∠ECB=∠ACB,
∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,
∴∠BEC=180°-(∠EBC+∠ECB)=180°-60°=120°,故①正确;
如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,
∵BE、CE分别为∠ABC、∠ACB的平分线,
∴AD为∠BAC的平分线,
∴DF=DG,
∴∠FDG=360°-90°×2-60°=120°,
又∵∠BDC=120°,
∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,
∴∠BDF=∠CDG,
∵在△BDF和△CDG中,
∴△BDF≌△CDG(ASA),
∴DB=CD,
∴∠DBC=(180°-120°)=30°,
∴∠DBE=∠DBC+∠CBE=30°+∠CBE,
∵BE平分∠ABC,AE平分∠BAC,
∴∠ABE=∠CBE,∠BAE=∠BAC=30°,
根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,
∴∠DBE=∠DEB,
∴DB=DE,故②正确;
∵DB=DE=DC,
∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;
综上所述,正确的结论有①②③共3个.
故选D.
【题目】某儿童游乐园门票价格规定如下表:
购票张数 | 1~50张 | 51~100张 | 100张以上 |
每张票的价格 | 13元 | 11元 | 9元 |
某校七年级(1)、(2)两个班共102人今年6.1儿童节去游该游乐园,其中(1)班人数较少,不足50人。经估算,如果两个班都以班为单位购票,则一共应付1218元。问:
(1)两个班各有多少学生?
(2)如果两班联合起来,作为一个团体购票,可以节省多少钱?