题目内容

【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

【答案】
(1)证明:连接OD,与AF相交于点G,

∵CE与⊙O相切于点D,

∴OD⊥CE,

∴∠CDO=90°,

∵AD∥OC,

∴∠ADO=∠DOC,∠DAO=∠BOC,

∵OA=OD,

∴∠ADO=∠DAO,

∴∠DOC=∠BOC,

在△CDO和△CBO中,

∴△CDO≌△CBO,

∴∠CBO=∠CDO=90°,

∴CB是⊙O的切线


(2)解:由(1)可知∠DOA=∠BCO,∠DOC=∠BOC,

∵∠ECB=60°,

∴∠DCO=∠BCO= ∠ECB=30°,

∴∠DOC=∠BOC=60°,

∴∠DOA=60°,

∵OA=OD,

∴△OAD是等边三角形,

∴AD=OD=OF,∵∠GOF=∠ADO,

在△ADG和△FOG中,

∴△ADG≌△FOG,

∴SADG=SFOG

∵AB=6,

∴⊙O的半径r=3,

∴S=S扇形ODF= = π.


【解析】(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO解决问题.(2)首先证明S=S扇形ODF , 然后利用扇形面积公式计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网