题目内容
【题目】如图,某小区楼房附近有一个斜坡,小张发现楼房在水平地面与斜坡处形成的投影中,在斜坡上的影子长CD=6m,坡角到楼房的距离CB=8m.在D点处观察点A的仰角为60°,已知坡角为30°,你能求出楼房AB的高度吗?
【答案】解:作DH⊥AB于H,
在Rt△CDE中,DE= CD=3,CE= CD=3 ,
∴BE=3 +8,
在Rt△ADH中,AH=DHtan∠ADH=9+8 ,
∴AB=AH+BH=12+8 ,
答:楼房AB的高度为(12+8 )米.
【解析】作DH⊥AB于H,根据正弦、余弦的定义求出DE、CE,根据正切的概念求出AH,计算即可.
【考点精析】认真审题,首先需要了解关于坡度坡角问题(坡面的铅直高度h和水平宽度l的比叫做坡度(坡比).用字母i表示,即i=h/l.把坡面与水平面的夹角记作A(叫做坡角),那么i=h/l=tanA),还要掌握关于仰角俯角问题(仰角:视线在水平线上方的角;俯角:视线在水平线下方的角)的相关知识才是答题的关键.
练习册系列答案
相关题目
【题目】小明用下面的方法求出方程2 ﹣3=0的解,请你仿照他的方法求出下面另外两个方程的解,并把你的解答过程填写在下面的表格中.
方程 | 换元法得新方程 | 解新方程 | 检验 | 求原方程的解 |
2 ﹣3=0 | 令 =t,则2t﹣3=0 | t= | t= >0 | = ,所以x= |
x﹣2 +1=0 | ||||
x+2+ =0 |