题目内容

【题目】如图,AB是⊙O的直径,OD垂直于弦AC于点E,且交⊙O于点D,F是BA延长线上一点,若∠CDB=∠BFD.
(1)求证:FD是⊙O的一条切线;
(2)若AB=10,AC=8,求DF的长.

【答案】
(1)证明:∵∠CDB=∠CAB,∠CDB=∠BFD,

∴∠CAB=∠BFD,

∴FD∥AC(同位角相等,两直线平行),

∵∠AEO=90°,

∴∠FDO=90°,

∴FD是⊙O的一条切线


(2)解:∵AB=10,AC=8,DO⊥AC,

∴AE=EC=4,AO=5,

∴EO=3,

∵AE∥FD,

∴△AEO∽△FDO,

=

=

解得:FD=


【解析】(1)利用圆周角定理以及平行线的判定得出∠FDO=90°,进而得出答案;(2)利用垂径定理得出AE的长,再利用相似三角形的判定与性质得出FD的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网