题目内容
【题目】如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.
(3)若⊙P与线段QC只有一个公共点,求t的取值范围.
【答案】(1);(2);(3)0<t≤或<t≤5.
【解析】试题分析:(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值;
(2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长;
(3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围.
试题解析:(1)∵OA=6,OB=8,∴由勾股定理可求得:AB=10,由题意知:OQ=AP=t,∴AC=2t,∵AC是⊙P的直径,∴∠CDA=90°,∴CD∥OB,∴△ACD∽△ABO,∴,∴AD= ,当Q与D重合时,AD+OQ=OA,∴,∴t=;
(2)当⊙Q经过A点时,如图1,OQ=OA﹣QA=4,∴t==4s,∴PA=4,∴BP=AB﹣PA=6,过点P作PE⊥OB于点E,⊙P与OB相交于点F、G,连接PF,∴PE∥OA,∴△PEB∽△AOB,∴,∴PE=,∴由勾股定理可求得:EF=,由垂径定理可求知:FG=2EF=;
(3)当QC与⊙P相切时,如图2,此时∠QCA=90°,∵OQ=AP=t,∴AQ=6﹣t,AC=2t,∵∠A=∠A,∠QCA=∠ABO,∴△AQC∽△ABO,∴,∴,∴t=,∴当0<t≤时,⊙P与QC只有一个交点;
当QC⊥OA时,此时Q与D重合,由(1)可知:t=,∴当<t≤5时,⊙P与QC只有一个交点,综上所述,当,⊙P与QC只有一个交点,t的取值范围为:0<t≤或<t≤5.