题目内容
【题目】如图,△ABC是等边三角形,D、E分别是BC和CB延长线上的点,且,连接AD、AE,BM、CN分别是△ABE和△ACD的高线,垂足分别为M、N, BG、CH分别是∠ABE和∠ACD的平分线,分别交AE、AD于点G、H.
证明:(1)△ABE∽△DCA;
(2)sin∠MBG=sin∠NCH.
【答案】(1)见解析;(2)见解析.
【解析】
(1)由两组对边成比例且夹角相等易证△ABE∽△DCA;
(2)由△ABE∽△DCA可得∠E=∠CAD,由互余关系可得∠EBM=∠ACN,再根据角平分线得到∠EBG=∠ACH,角度作差可得∠MBG=∠NCH,即可得证.
证明:(1)∵△ABC是等边三角形
∴∠ABC=∠ACB=60°
∴∠ABE=∠DCA=120°
又∵
∴△ABE∽△DCA
(2)∵BM、CN分别是△ABE和△ACD的高线,
即BM⊥AE,CN⊥AD
∴∠EBM+∠E=90°,∠ACN+∠CAD=90°,
∵△ABE∽△DCA
∴∠E=∠CAD
∴∠EBM=∠ACN
又∵BG平分∠ABE,CH平分∠ACD,且∠ABE=∠ACD=120°
∴∠EBG=∠ACH=60°
∴∠EBG-∠EBM=∠ACH-∠ACN,即∠MBG=∠NCH
∴sin∠MBG=sin∠NCH
【题目】某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“铅笔”的次数m | 68 | 111 | 136 | 345 | 564 | 701 |
落在“铅笔”的频率m/n | 0.68 | 0.74 | △ | 0.69 | 0.705 | △ |
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)