题目内容
【题目】某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长成正比例,在营销过程中得到了表格中的数据.
薄板的边长(cm) | 20 | 30 |
出厂价(元/张) | 50 | 70 |
(1)求一张薄板的出厂价与边长之间满足的函数关系式;
(2)40cm的薄板,获得的利润是26元(利润=出厂价﹣成本价).
①求一张薄板的利润与边长之间满足的函数关系式;
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?
【答案】(1)y=2x+10;(2)①p=﹣x2+2x+10;②出厂一张边长为25cm的薄板,获得的利润最大,最大利润是35元.
【解析】
试题(1)利用待定系数法求一次函数解析式即可得出答案;
(2)①首先假设一张薄板的利润为p元,它的成本价为mx2元,由题意,得:p=y-mx2,进而得出m的值,求出函数解析式即可;
②利用二次函数的最值公式求出二次函数的最值即可.
试题解析:⑴设一张薄板的边长为x cm,它的出厂价为y元,基础价为n元,浮动价为kx元,
则y=kx+n
由表格中数据得解得
∴y=2x+10
⑵①设一张薄板的利润为P元,它的成本价为mx2元,由题意得P=y-mx2=2x+10-mx2
将x=40,P=26代入P=2x+10-mx2中,得26=2×40+10-m×402解得m=
∴P=-x2+2x+10 (3分)
②∵a=-<0 ∴当(在5~50之间)时,
即出厂一张边长为25cm的薄板,所获得的利润最大,最大利润为35元
考点: 二次函数的应用.
练习册系列答案
相关题目