题目内容
【题目】如右图,正方形ABCD的边长为2,点E是BC边上一点,以AB为直径在正方形内作半圆
O,将△DCE沿DE翻折,点C刚好落在半圆O的点F处,则CE的长为( )
A. B. C. D.
【答案】A
【解析】通过证明△ODF≌△ODA,可以得到F是⊙O的切线,然后在直角△BOE中利用勾股定理计算出线段CE的长.
详解:如图:连接OF,OD.
在△ODF和△ODA中,
∵OF=OA,DA=DF,DO=DO,
∴△ODF≌△ODA,
∴∠OFD=∠OAD=90°,
∴DF是⊙O的切线。
∵∠DFE=∠C=90°,
∴E,F,O三点共线。
∵EF=EC,
∴在△BEO中,BO=1,BE=2CE,EO=1+CE,
∴(1+CE) =1+(2CE),
解得:BE=.
故选A.
练习册系列答案
相关题目
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.
(1)证明:DF是⊙O的切线;
(2)若AC=3AE,FC=6,求AF的长.
【题目】创客联盟的队员想用3D打印完成一幅边长为6米的正方形作品ABCD,设计图案如图所示(四周阴影是四个全等的矩形,用材料甲打印;中心区是正方形MNPQ,用材料乙打印).在打印厚度保持相同的情况下,两种材料的消耗成本如下表:
材料 | 甲 | 乙 |
价格(元/米2) | 80 | 50 |
设矩形的较短边AH的长为x米,打印材料的总费用为y元.
(1)MQ的长为 米(用含x的代数式表示);
(2)求y关于x的函数解析式;
(3)当中心区的边长不小于2米时,预备材料的购买资金2800元够用吗?请利用函数的增减性来说明理由.