题目内容

【题目】问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE,
易证△ABC≌△BDE,从而得到△BCD的面积为
初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.
简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)

【答案】解:初步探究:△BCD的面积为
理由:如图②,过点D作BC的垂线,与BC的延长线交于点E.
∴∠BED=∠ACB=90°.
∵线段AB绕点B顺时针旋转90°得到线段BE,
∴AB=BD,∠ABD=90°.
∴∠ABC+∠DBE=90°.
∵∠A+∠ABC=90°.
∴∠A=∠DBE.
在△ABC和△BDE中,

∴△ABC≌△BDE(AAS)
∴BC=DE=a.
∵SBCD= BCDE
∴SBCD=
简单应用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,
∴∠AFB=∠E=90°,BF= BC= a.
∴∠FAB+∠ABF=90°.
∵∠ABD=90°,
∴∠ABF+∠DBE=90°,
∴∠FAB=∠EBD.
∵线段BD是由线段AB旋转得到的,
∴AB=BD.
在△AFB和△BED中,

∴△AFB≌△BED(AAS),
∴BF=DE= a.
∵SBCD= BCDE,
∴SBCD= aa= a2
∴△BCD的面积为


【解析】初步探究:如图②,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a.进而由三角形的面积公式得出结论;
简单运用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF= BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网