题目内容
【题目】如图,在△ABC中,∠ABC=90°,AB=BC=2,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为_____.
【答案】2﹣
【解析】
过E作EG∥AB,交AC于G,易得AG=EG,EF=CF,依据△ABC∽△GEF,即可得到EG:EF:GF=1:1:,故设EG=k=AG,则EF=k=CF,FG=k,根据AC=2,可得k+k+k=,于是得到结论.
解:如图,过E作EG∥AB,交AC于G,则∠BAE=∠AEG,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
∴∠CAE=∠AEG,
∴AG=EG,
同理可得,EF=CF,
∵AB∥GE,BC∥EF,
∴∠BAC=∠EGF,∠BCA=∠EFG,
∴△ABC∽△GEF,
∵∠ABC=90°,AB=BC=2,
∴AC=2,
∴EG:EF:GF=AB:BC:AC=1:1:,
设EG=k=AG,则EF=k=CF,FG=k,
∵AC=2,
∴k+k+k=2,
∴k=(2﹣),
∴EF=k=2﹣.
故答案为:2﹣
【题目】在一个不透明的盒子里装有只有颜色不同的黑、白两种球共50个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
摸球的次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数 | 65 | 124 | 278 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |
(1)请估计当很大时,摸到白球的频率将会接近 (精确到0.1);
(2)假如摸一次,摸到黑球的概率 ;
(3)试估算盒子里黑颜色的球有多少只.
【题目】随着人们生活质量的提高,净水器已经慢慢走入了普通百姓家庭,某电器公司销售每台进价分别为2000元、1700元的A、B两种型号的净水器,下表是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 18000元 |
第二周 | 4台 | 10台 | 31000元 |
(1)分别求A、B两种型号的净水器的销售单价;
(2)若该电器公司准备用不多于54000元的金额采购这两种型号的净水器共30台,求A种型号的净水器最多能采购多少台?