题目内容
【题目】在⊙O中,直径AB⊥弦CD于点F,点E是弧AD上一点,连BE交CD于点N,点P在CD的延长线上,PN=PE.
(1)求证:PE是⊙O的切线;
(2)连接DE,若DE∥AB,OF=3,BF=2,求PN的长.
【答案】(1)详见解析;(2).
【解析】
(1)连接OE,由等腰三角形的性质得出∠PEN=∠PNE=∠BNF,∠OEB=∠OBE.证出∠OEB+∠PEN=90°,即PE⊥OE,即可得出结论;
(2)连接CE,证出CE为⊙O的直径.由垂径定理得出CF=DF,得出DE=2OF=6.求出OC=OB=5,CE=10,由勾股定理得出CD=8.设PD=x,则PC=x+8.在Rt△PDE和Rt△PCE中,由勾股定理得出方程,解方程求出PD=,由勾股定理即可得出答案.
(1)证明:连接OE,如图1所示:
∵PN=PE,
∴∠PEN=∠PNE=∠BNF,
∵OE=OB,
∴∠OEB=∠OBE.
∵AB⊥CD,
∴∠OBE+∠BNF=90°,
∴∠OEB+∠PEN=90°,
即∠OEP=90°,
∴PE⊥OE,
∴PE是⊙O的切线.
(2)解:连接CE,如图2所示:
∵DE∥AB,AB⊥CD,
∴∠EDC=90°
∴CE为⊙O的直径.
∵AB⊥CD,
∴CF=DF,∴DE=2OF=6.
∵OF=3,BF=2,∴OC=OB=5,CE=10,
∴CD===8,
由(1)知PE⊥CE.设PD=x,则PC=x+8.
在Rt△PDE和Rt△PCE中,由勾股定理,得:PD2+DE2=PE2=PC2-CE2,
即x2+62=(x+8)2-102,
解得:x=,
∴PD=.
∴PE===,
∴PN=PE=.
【题目】某公司从2016年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:
年度 | 投入技改资金x/万元 | 产品成本y/(万元/件) |
2016 | 2 | 18 |
2017 | 3 | 12 |
2018 | 4 | 9 |
2019 | 4.5 | 8 |
(1)根据表格中数据,求y关于x的函数解析式。
(2)在图中的网格中建立适当的平面直角坐标系,画出该函数的大致图像。
(3)如果打算在2020年让产品成本不高于7万元,则投入技改资金至少为 万元。