题目内容

在△ABC中,BC=a,AC=b,AB=c,∠C=90°,CD和BE是△ABC的两条中线,且CD⊥BE,那么a:b:c=(  )
A.1:2:3B.3:2:1C.
3
2
:1
D.1:
2
3
可以用建立直角坐标系来做.以三角形BC所在的边为x轴,以AC所在的边为y轴,C点为原点建立直角坐标系.
可得,C(0,0),B(a,0),A(0,b).
∵CD和BE为中线,
∴D,E为中点,则D(
a
2
b
2
),E(0,
b
2
).
则直线BE的斜率是:
-
b
2
a
=-
b
2a

直线CD的斜率是:
b
2
a
2
=
b
a

∵CD与BE垂直,所以CD与BE所在直线的斜率的乘积为-1,即-
b
2a
b
a
=-1.
∴b2=2a2
∴a:b=1:
2

又∵a2+b2=c2
∴a:b:c=1:
2
3

故选D.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网