题目内容

【题目】经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.

(1)求大桥上车流密度为100辆/千米时的车流速度;

(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?

(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.

【答案】(1)大桥上车流密度为100辆/千米时的车流速度48千米/小时;

(2)应控制大桥上的车流密度在70<x<120范围内;

(3)当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.

【解析】

试题分析:(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;

(2)由(1)的解析式建立不等式组求出其解即可;

(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.

试题解析:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得

解得:

∴当20≤x≤220时,v=﹣x+88,

当x=100时,v=﹣×100+88=48(千米/小时);

(2)由题意,得

解得:70<x<120.

∴应控制大桥上的车流密度在70<x<120范围内;

(3)设车流量y与x之间的关系式为y=vx,

当0≤x≤20时

y=80x,

∴k=80>0,

∴y随x的增大而增大,

∴x=20时,y最大=1600;

当20≤x≤220时

y=(﹣x+88)x=﹣(x﹣110)2+4840,

∴当x=110时,y最大=4840.

∵4840>1600,

∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网