题目内容
【题目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值与x无关,求y的值.
【答案】(1)15xy﹣6x﹣9;(2)y=
【解析】试题分析:(1)把A、B代入3A+6B,再按照去括号法则去掉整式中的小括号,再合并整式中的同类项,将3A+6B化到最简即可;
(2)根据3A+6B的值与x无关,令含x的项系数为0,解关于y的一元一次方程即可求得y的值.
试题解析:(1)3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)
=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6
=15xy﹣6x﹣9;
(2)原式=15xy﹣6x﹣9=(15y﹣6)x﹣9
要使原式的值与x无关,则15y﹣6=0,
解得:y=.
练习册系列答案
相关题目