题目内容
【题目】如图,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若AF=2,则的面积为__.
【答案】
【解析】
如图,取DF的中点K,连接AK,EK.连接GM交EF于H.首先证明△DEF是等腰直角三角形求出DE,EF,解直角三角形求出EN,MH即可解决问题.
解:如图,取DF的中点K,连接AK,EK.连接GM交EF于H.
∵四边形ACD是正方形,
∴AD=AB=6,∠DAB=90°,AB∥CD,∠DAC=∠CAB=45°,
∵DE⊥EF,
∴∠DEF=∠DAF=90°,
∵DK=KF,
∴KA=KD=KF=KE,
∴A,F,E,D四点共圆,
∴∠DFE=∠DAE=45°,
∴∠EDF=∠EFD=45°,
∴DE=EF,
∵AF=2,AD=6,
∴DF=,
∴DE=EF=,
∵AF∥CD,
∴,
∴FG=FM=,
∴GM=FM=
,
∴FH=GH=HM=,
∵EF⊥GM,
∴GH=HM=,
∴EH=EF-FH=,
∵MH∥DE,
∴,
∴EN=,
∴S△ENM=ENMH=
.
故答案为:.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目