题目内容

【题目】已知:RtA′BC′RtABC,A′C′B=ACB=90°,A′BC′=ABC=60°,RtA′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.

(1)如图1所示,当点C′在AB边上时,判断线段AD和线段A′D之间的数量关系,并证明你的结论;

(2)将RtA′BC′由图1的位置旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;

(3)将RtA′BC′由图1的位置按顺时针方向旋转α角(0°≤α≤120°),当A、C′、A′三点在一条直线上时,请直接写出旋转角的度数.

【答案】(1)AD=A′D(2)仍然成立:AD=A′D(3)60°

【解析】

试题分析:(1)易证BCCBAA都是等边三角形,从而可以求出ACD=BAD=60°DCA=DAC=30°,进而可以证到AD=DC=AD.

(2)解答中提供了两种方法,分别利用相似与全等,证明所得的结论.

(3)当A、C、A三点在一条直线上时,有ACB=90°,易证RtACBRtACB (HL),从而可以求出旋转角α的度数.

试题解析:答:(1)AD=A′D.

证明:如图1,

RtABC′≌RtABC,

BC=BC,BA=BA

∵∠ABC=ABC=60°

∴△BCCBAA都是等边三角形.

∴∠BAA=BCC=60°

∵∠A′C′B=90°,

∴∠DC′A′=30°.

∵∠AC′D=BC′C=60°,

∴∠ADC′=60°.

∴∠DA′C′=30°.

∴∠DAC′=DC′A,DC′A′=DA′C′.

AD=DC′,DC′=DA′.

AD=A′D.

(2)仍然成立:AD=A′D.

证法一:利用相似.如图2﹣1.

由旋转可得,BA=BA′,BC=BC′,CBC′=ABA′

∵∠1=(180°﹣ABA′),3=(180°﹣CBC′)

∴∠1=3.

设AB、CD交于点O,则AOD=BOC

∴△BOC∽△DOA.

∴∠2=4,

连接BD,

∵∠BOD=COA,

∴△BOD∽△COA.

∴∠5=6.

∵∠ACB=90°,

∴∠2+5=90°.

∴∠4+6=90°,即ADB=90°.

BA=BA′,ADB=90°,

AD=A′D.

证法二:利用全等.如图2﹣2.

过点A作AEA′C′,交CD的延长线于点E,则1=2,E=3.

由旋转可得,AC=A′C′,BC=BC′,

∴∠4=5.

∵∠ACB=A′C′B=90°,

∴∠5+6=3+4=90°,

∴∠3=6.

∴∠E=6,AE=AC=AC

ADE与ADC中,

∴△ADE≌△ADC(ASA),

AD=A′D.

(3)当A、C′、A′三点在一条直线上时,如图3,

则有ACB=180°﹣∠ACB=90°

在RtACB和RtACB中,

RtACBRtACB (HL).

∴∠ABC=ABC=60°

当A、C′、A′三点在一条直线上时,旋转角α的度数为60°.

练习册系列答案
相关题目

【题目】已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).

(1)求此二次函数的表达式;

(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;

【答案】(1)y=-x2x+8(2)

【解析】试题分析:(1)求出一元二次方程的两根即可求出两点坐标,把BC两点坐标代入二次函数的解析式就可解答;

(2)过点FFGAB,垂足为G,由EFAC,得BEF∽△BAC,利用相似比求EF利用sin∠FEG=sin∠CABFG,根据S=SBCE-SBFE,求Sm之间的函数关系式.

解:(1)解方程x2-10x+16=0得x12x28

∴B20)、C08

∴所求二次函数的表达式为y=-x2x8

(2)∵AB=8,OC=8,依题意,AE=m,则BE=8-m,

∵OA6OC8∴AC10.

∵EF∥AC, ∴△BEF∽△BAC.

.  即. ∴EF.

过点F作FG⊥AB,垂足为G,

sin∠FEGsin∠CAB.∴. 

∴FG·8m.

∴SSBCESBFE

0m8

点睛:本题考查了一元二次方程的解法,待定系数法求函数关系系,相似三角形的判定与性质,span>锐角三角函数的定义,割补法求图形的面积,熟练掌握待定系数法求二次函数关系式、相似三角形的判定与性质是解答本题的关键.

型】解答
束】
23

【题目】如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).RtCDE中,CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.RtCDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:

(1)如图(2),当RtCDE运动到点D与点O重合时,设CE交AB于点M,求BME的度数.

(2)如图(3),在RtCDE的运动过程中,当CE经过点B时,求BC的长.

(3)在RtCDE的运动过程中,设AC=h,OAB与CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网