题目内容
【题目】阅读理解:已知两直线,L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1k2=﹣1,根据以上结论解答下列各题:
(1)已知直线y=2x+1与直线y=kx﹣1垂直,求k的值.
(2)若一条直线经过A(2,3),且与y=x+3垂直,求这条直线的函数关系式.
【答案】(1)k=;(2)y=﹣3x+9.
【解析】
(1)由k1k2=﹣1即可求解;
(2)由两直线垂直可知该直线的k=﹣3,则可设直线解析式为y=﹣3x+b,再将点A(2,3)代入即可求解.
解:(1)∵直线y=2x+1与直线y=kx﹣1垂直,
∴2k=﹣1,
∴k=
(2)∵过点A的直线与y=x+3垂直,
∴可设过点A的直线解析式为y=﹣3x+b
将点A(2,3)代入,得:﹣6+b=3,
解得:b=9,
所以这条直线解析式为y=﹣3x+9
【题目】抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)
路程(千米) | 运费(元/吨千米) | |||
甲库 | 乙库 | 甲库 | 乙库 | |
A库 | 20 | 15 | 12 | 12 |
B库 | 25 | 20 | 10 | 8 |
(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
【题目】某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.
(1)根据图示填写下表:
平均数/分 | 中位数/分 | 众数/分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;
(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.