题目内容
【题目】完成下面的证明
如图,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度数.
解:∵FG//CD (已知)
∴∠2=_________(____________________________)
又∵∠1=∠3,
∴∠3=∠2(等量代换)
∴BC//__________(_____________________________)
∴∠B+________=180°(______________________________)
又∵∠B=50°
∴∠BDE=________________.
【答案】 ∠1 两直线平行,同位角相等 DE 内错角相等,两直线平行 ∠BDE 两直线平行,同旁内角互补 130°
【解析】分析:由两直线平行,同位角相等,得到∠2=∠1,再由等式的性质得到∠3=∠2,从而得到BC//DE,再由平行线的性质得到∠B+∠BDE=180°,从而得到结论.
详解:∵FG//CD (已知)
∴∠2=∠1(两直线平行,同位角相等)
又∵∠1=∠3,
∴∠3=∠2(等量代换)
∴BC//DE(内错角相等,两直线平行)
∴∠B+∠BDE=180°(两直线平行,同旁内角互补)
又∵∠B=50°
∴∠BDE=130.
练习册系列答案
相关题目