题目内容
【题目】如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
【答案】
(1)
解:∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),
∴ ,
解得 ,
故抛物线的函数解析式为y=x2﹣2x﹣3
(2)
解:令x2﹣2x﹣3=0,
解得x1=﹣1,x2=3,
则点C的坐标为(3,0),
∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴点E坐标为(1,﹣4),
设点D的坐标为(0,m),作EF⊥y轴于点F,
∵DC2=OD2+OC2=m2+32,DE2=DF2+EF2=(m+4)2+12,
∵DC=DE,
∴m2+9=m2+8m+16+1,
解得m=﹣1,
∴点D的坐标为(0,﹣1)
(3)
解:∵点C(3,0),D(0,﹣1),E(1,﹣4),
∴CO=DF=3,DO=EF=1,
根据勾股定理,CD= = = ,
在△COD和△DFE中,
∵ ,
∴△COD≌△DFE(SAS),
∴∠EDF=∠DCO,
又∵∠DCO+∠CDO=90°,
∴∠EDF+∠CDO=90°,
∴∠CDE=180°﹣90°=90°,
∴CD⊥DE,
①分OC与CD是对应边时,
∵△DOC∽△PDC,
∴ = ,
即 = ,
解得DP= ,
过点P作PG⊥y轴于点G,
则 = = ,
即 = = ,
解得DG=1,PG= ,
当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,
所以点P(﹣ ,0),
当点P在点D的右边时,OG=DO+DG=1+1=2,
所以,点P( ,﹣2);
②OC与DP是对应边时,
∵△DOC∽△CDP,
∴ = ,
即 = ,
解得DP=3 ,
过点P作PG⊥y轴于点G,
则 = = ,
即 = = ,
解得DG=9,PG=3,
当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,
所以,点P的坐标是(﹣3,8),
当点P在点D的右边时,OG=OD+DG=1+9=10,
所以,点P的坐标是(3,﹣10),
综上所述,满足条件的点P共有4个,其坐标分别为(﹣ ,0)、( ,﹣2)、(﹣3,8)、(3,﹣10).
【解析】(1)把点A、B的坐标代入抛物线解析式,解方程组求出b、c的值,即可得解;(2)令y=0,利用抛物线解析式求出点C的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理列式表示出DC2与DE2 , 然后解方程求出m的值,即可得到点D的坐标;(3)根据点C、D、E的坐标判定△COD和△DFE全等,根据全等三角形对应角相等可得∠EDF=∠DCO,然后求出CD⊥DE,再利用勾股定理求出CD的长度,然后①分OC与CD是对应边;②OC与DP是对应边;根据相似三角形对应边成比例列式求出DP的长度,过点P作PG⊥y轴于点G,再分点P在点D的左边与右边两种情况,分别求出DG、PG的长度,结合平面直角坐标系即可写出点P的坐标.