题目内容
【题目】如图,在平面直角坐标系中,直线y=-x+4与x轴、y轴分别交于点A,点B、点D在y轴的负半轴上,若将△OAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处。
(1)求AB的长。
(2)求点C和点D的坐标。
(3)y轴上是否存在一点P,S△PAB= S△OCD?
【答案】(1)AB=5;(2)C(8,0),D(0,-6);(3)P1(0,12),P2(0,-4),见解析.
【解析】
(1)先求得点A和点B的坐标,则可得到OA、OB的长,然后依据勾股定理可求得AB的长,
(2)依据翻折的性质可得到AC的长,于是可求得OC的长,从而可得到点C的坐标;设OD=x,则CD=DB=x+4.,Rt△OCD中,依据勾股定理可求得x的值,从而可得到点D(0,-6).
(3)先求得S△PAB的值,然后依据三角形的面积公式可求得BP的长,从而可得到点P的坐标.
(1)令x=0得:y=4,
∴B(0,4).
∴OB=4
令y=0得:0=x+4,解得:x=3,
∴A(3,0).
∴OA=3.
在Rt△OAB中,AB==5.
(2) ∵AB=5,
∴OC=OA+AC=3+5=8,
∴C(8,0).
设OD=x,则CD=DB=x+4.
在Rt△OCD中,DC2=OD2+OC2,即(x+4)2=x2+82,解得:x=6,
∴D(0,6).
(3)∵S△PAB=S△OCD,
∴S△PAB=××6×8=12.
∵点P在y轴上,S△PAB=12,
∴BPOA=12,即×3BP=12,解得:BP=8,
∴P1(0,12),P2(0,-4),.
练习册系列答案
相关题目