题目内容
【题目】以的各边,在边的同侧分别作三个正方形.他们分别是正方形,,,试探究:
如图中四边形是什么四边形?并说明理由.
当满足什么条件时,四边形是矩形?
当满足什么条件时,四边形是正方形?
【答案】四边形是平行四边形,理由见解析;当时,平行四边形是矩形;当且时,四边形是正方形.
【解析】
(1)根据全等三角形的判定定理SAS证得△BDE≌△BAC,所以全等三角形的对应边DE=AG.然后利用正方形对角线的性质、周角的定义推知∠EDA+∠DAG=180°,易证ED∥GA;最后由“一组对边平行且相等”的判定定理证得结论;
(2)根据“矩形的内角都是直角”易证∠DAG=90°.然后由周角的定义求得∠BAC=135°;
(3)由“正方形的内角都是直角,四条边都相等”易证∠DAG=90°,且AG=AD.由□ABDI和□ACHG的性质证得,AC=AB.
图中四边形是平行四边形.理由如下:
∵四边形、四边形、四边形都是正方形,
∴,,,.
∴(同为的余角).
在和中,
,
∴,
∴,.
∵是正方形的对角线,
∴.
∵,
∴
∴,
∴四边形是平行四边形(一组对边平行且相等).
当四边形是矩形时,.
则,
即当时,平行四边形是矩形;
当四边形是正方形时,,且.
由知,当时,.
∵四边形是正方形,
∴.
又∵四边形是正方形,
∴,
∴.
∴当且时,四边形是正方形.
练习册系列答案
相关题目