题目内容
【题目】如图,菱形ABCD的对角线AC和BD交于点O,分别过点C. D作CE∥BD,DE∥AC,CE和DE交于点E.
(1)求证:四边形ODEC是矩形;
(2)当∠ADB=60°,AD=2时,求EA的长。
【答案】(1)见解析;(2)
【解析】
(1)先证四边形ODEC是平行四边形,然后根据菱形的对角线互相垂直,得到∠DOC=90°,根据矩形的定义即可判定四边形ODEC是矩形.
(2)根据含30度角直角三角形的性质、勾股定理来求EA的长度即可.
(1)∵CE∥BD,DE∥AC,
∴四边形ODEC是平行四边形,
又∵菱形ABCD,
∴AC⊥BD,∴∠DOC=90°,
∴四边形ODEC是矩形;
(2)∵Rt△AOD中,∠ADO=60°,
∴∠OAD=30°,
∴OD=AD=,
∴AO==3,
∴AC=6,
∵四边形ODEC是矩形,
∴EC=OD=,∠ACE=90°,
∴AE==.
练习册系列答案
相关题目
【题目】近日,中国工程院院士、“杂交水稻之父”袁隆平团队选育培植的耐盐碱水稻(即海水稻)在山东青岛等六个试验基地开始春播育秧,预计今年的种植规模将超一万亩.已知去年某基地甲、乙两块实验田海水稻的总产量都是3600千克,乙实验田海水稻种植面积是甲实验田的,而乙实验田海水稻平均亩产量比甲多60千克.
(1)求甲、乙两块实验田种植海水稻的面积;
(2)经过科学家的努力,海水稻正从试验田走向餐桌,某电商新购进A、B两种包装的海水稻产品共50袋,其进价、标价及优惠方案如下表所示.若要保证这批海水稻产品全部售出后所得利润不少于1000元,该电商至少要购进A种包装的海水稻产品多少袋?
包装类型 | A | B |
进价(元/袋) | 100 | 30 |
标价(元/袋) | 150 | 50 |
优惠方案 | 全部九折 |