题目内容

【题目】如图,ABC中,∠ABC=45°,CDABD,BE平分∠ABC,且BEACE,与CD相交于点F,DHBCH,交BEG,下列结论中正确的是(  )

①△BCD为等腰三角形;②BF=AC;CE=BF;BH=CE.

A. ①② B. ①③ C. ①②③ D. ①②③④

【答案】C

【解析】

根据“等腰三角形的判定与性质和全等三角形的判定与性质”结合“已知条件”进行分析解答即可.

(1)∵CD⊥AB,

∴∠BDC=∠CDA=90°,

∵∠ABC=45°,

∴∠BCD=45°=∠ABC,

∴BD=CD,

∴△BCD是等腰三角形即结论成立

(2)∵BE⊥AC,

∴∠AEB=∠CDA=90°,

∴∠ABF+∠A=90°,∠ACD+∠A=90°,

∴∠ABF=∠ACD,

又∵∠BDF=∠CDA=90°,BD=CD,

∴△BDF≌△CDA,

∴BF=AC,即结论成立

(3)∵BE⊥AC,BE平分∠ABC,

∴∠BEA=∠BEC=90°,∠ABE=∠CBE,

∵BE=BE,

∴△ABE≌△CBE,

∴CE=AE=AC,

∴CE=BF,即结论成立

(4)∵BD=CD,DH⊥BC,

∴BH=BC,

∵CE=AC,且不能确定AC=BC成立

不能确定BH=CE成立即结论不一定成立.

综上所述,4个结论中成立的是①②③.

故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网