题目内容
【题目】解方程:
(1)x2+3x﹣2=0;
(2)(x﹣3)(x+1)=x﹣3.
【答案】
(1)
解:△=32﹣4×(﹣2)=11,
x= ,
所以x1= ,x2=
(2)
解:(x﹣3)(x+1)﹣(x﹣3)=0,
(x﹣3)(x+1﹣1)=0,
x﹣3=0或x+1﹣1=0,
所以x1=3,x2=0
【解析】(1)利用公式法解方程;(2)先移项得到(x﹣3)(x+1)﹣(x﹣3)=0,然后利用因式分解法解方程.
【考点精析】认真审题,首先需要了解公式法(要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之),还要掌握因式分解法(已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势)的相关知识才是答题的关键.
【题目】某校为了更好的开展“学校特色体育教育”,从全校八年级各班随机抽取了60学生,进行各项体育项目的测试,了解他们的身体素质情况.下表是整理样本数据,得到的关于每个个体的测试成绩的部分统计表、图: 某校60名学生体育测试成绩成绩统计表
成绩 | 划记 | 频数 | 频率 |
优秀 | 正正正 | a | 0.3 |
良好 | 正正正正正正 | 30 | b |
合格 | 正 | 9 | 0.15 |
不合格 | c | d | |
合计 |
(说明:40﹣55分为不合格,55﹣70分为合格,70﹣85分为良好,85﹣100分为优秀)
请根据以上信息,解答下列问题:
(1)表中的a=;b=;c=;d= .
(2)请根据频数分布表,画出相应的频数分布直方图.
【题目】一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的情况(记向东为正)记录如下(x>5且x<14,单位:m):
行驶次数 | 第一次 | 第二次 | 第三次 | 第四次 |
行驶情况 | x | ﹣x | x﹣3 | 2(5﹣x) |
行驶方向(填“东”或“西”) |
|
|
|
|
(1)请将表格补充完整;
(2)求经过连续4次行驶后,这辆出租车所在的位置;
(3)若出租车行驶的总路程为41m,求第一次行驶的路程x的值.