题目内容
【题目】如图,小黄站在河岸上的点,看见河里有一小船沿垂直于岸边的方向划过来.此时,测得小船的俯角是,若小黄的眼睛与地面的距离是米,米,平行于所在的直线,迎水坡的坡度为,坡长米,则此时小船到岸边的距离的长为( )米.(,结果保留两位有效数字)
A. 11 B. 8.5 C. 7.2 D. 10
【答案】D
【解析】
把AB和CD都整理为直角三角形的斜边,利用坡度和勾股定理易得点B和点D到CA的距离,进而利用俯角的正切值可求得CH长度.CH﹣AE=EH即为AC长度.
过点B作BE⊥AC于点E,延长DG交CA于点H,得Rt△ABE和矩形BEHG.
∵i==,设BE=4x,则AE=3x,AB=5x.
∵AB=10.5,∴x=2.1,∴BE=8.4,AE=6.3.
∵DG=1.6,BG=0.7,∴DH=DG+GH=1.6+8.4=10,AH=AE+EH=6.3+0.7=7.
在Rt△CDH中,∵∠C=∠FDC=30°,DH=10,tan30°==,∴CH≈17.
又∵CH=CA+7,即17=CA+7,∴CA=17﹣7=10(米).
故选D.
练习册系列答案
相关题目
【题目】已知抛物线y=(x-1)2-1.
(1)该抛物线的对称轴是______________,顶点坐标为____________;
(2)选取适当的数据填入下表,并在图中的直角坐标系内描点画出该抛物线;
x | … | … | |||||
y | … | … |
(3)根据图象,直接写出当y<0时,x的取值范围.