题目内容
【题目】如图,直线AB,CD相交于点O,OM⊥AB.
(1)∠AOC的邻补角为 (写出一个即可);
(2)若∠1=∠2,判断ON与CD的位置关系,并说明理由;
(3)若∠1=∠BOC,求∠MOD的度数.
【答案】(1)∠BOC,∠AOD;(2)ON⊥CD.证明见解析;(3)150°.
【解析】
(1)利用直线CD或直线AB直接写∠AOC的邻补角,
(2)根据垂直定义可得∠AOM=90°,进而可得∠1+∠AOC=90°,
再利用等量代换可得到∠2+∠AOC=90°,从而可得答案;
(3)根据垂直定义和条件可得∠1=30°,再根据邻补角定义可得∠MOD的度数.
解:(1)∠BOC,∠AOD;
故答案为:∠BOC.(答案不唯一)
(2)结论:ON⊥CD.
证明:∵OM⊥AB,∴∠1+∠AOC=90°.
又∵∠1=∠2,
∴∠NOC=∠2+∠AOC=90°,
∴ON⊥CD.
(3)∵∠1=∠BOC,
∴∠BOC=4∠1.
∵∠BOC-∠1=∠MOB=90°,
∴∠1=30°,
∴∠MOD=180°-∠1=150°.
练习册系列答案
相关题目
【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.
投资量x(万元) | 2 |
种植树木利润y1(万元) | 4 |
种植花卉利润y2(万元) | 2 |
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.