题目内容
【题目】甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
【答案】(1)见解析;(2)这个游戏对双方公平,理由见解析.
【解析】
(1)通过列表法即可得(x,y)所有可能出现的结果数;
(2)根据(1)的结果,分别找出x+y为奇数、x+y为偶数的结果数,利用概率公式分别求解后进行比较即可.
(1)列表如下:
1 | 2 | 3 | 4 | |
1 | (1,1) | (1,2) | (1,3) | (1,4) |
2 | (2,1) | (2,2) | (2,3) | (2,4) |
3 | (3,1) | (3,2) | (3,3) | (3,4) |
4 | (4,1) | (4,2) | (4,3) | (4,4) |
由表格可知(x,y)所有可能出现的结果共有16种;
(2)这个游戏对双方公平,理由如下:
由列表法可知,在16种可能出现的结果中,它们出现的可能性相等,
∵x+y为奇数的有8种情况,∴P(甲获胜)=,
∵x+y为偶数的有8种情况,∴P(乙获胜)= ,
∴P(甲获胜)=P(乙获胜),
∴这个游戏对双方公平.
【题目】为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.
学生 垃圾类别 | ||||||||
厨余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求8名学生中至少有三类垃圾投放正确的概率;
(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.