题目内容
【题目】在边长为2的菱形中,,是边的中点,若线段绕点旋转得线段,
(Ⅰ)如图①,线段的长__________.
(Ⅱ)如图②,连接,则长度的最小值是__________.
【答案】1,
【解析】
(Ⅰ)根据中点定义可求出线段的长;
(Ⅱ)当A'在MC上时,线段A'C长度最小,作ME⊥CD于点E,首先在直角△DME中利用三角函数求得ED和EM的长,然后在直角△MEC中利用勾股定理求得MC的长,然后减去MA'的长即可求解.
解:(1)∵是边的中点,
∴MA=AD=1,
故答案是1;
(2)当A'在MC上时,线段A'C长度最小,作ME⊥CD于点E.
∵菱形ABCD中,∠A=60°,
∴∠EDM=60°,
在直角△MDE中,DE=MDcos∠EDM=×1=,ME=MDsin∠EDM=,
则EC=CD+ED=2+=,
在直角△CEM中,MC= = =,
当A'在MC上时A'C最小,则A′C长度的最小值是:-1.
故答案是:-1.
练习册系列答案
相关题目
【题目】某校为激发学生学习数学的兴趣,开设了“数独、速算、魔方、七巧板、华容道”五门校本课程,规定每位学生只能选一门.该校共有学生1600人.为了解学生的报名意向,学校随机调查了一些学生,并制成如下统计图表:
校本课程报名意向统计表
课程 | 频数 | 频率 |
数独 | 8 | a |
速算 | m | 0.2 |
魔方 | 27 | b |
七巧板 | n | 0.3 |
华容道 | 15 | c |
(1)在这次活动中,学校采取的调查方式是 (填写“普查”或“抽样调查”);
(2)求出扇形统计图中“速算”所对应的扇形圆心角的度数;
(3)a+b+c= ,m= ;(答案直接填写在横线上)
(4)请你估算,全校选择“数独”和“魔方”的学生共有多少人?