题目内容
【题目】已知点A(﹣4,8)和点B(2,n)在抛物线y=ax2上.
(Ⅰ)求该抛物线的解析式和顶点坐标,并求出n的值;
(Ⅱ)求点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求此时点Q的坐标;
(Ⅲ)平移抛物线y=ax2,记平移后点A的对应点为A',点B的对应点为B',点C(﹣2,0)是x轴上的定点.
①当抛物线向左平移到某个位置时,A'C+CB'最短,求此时抛物线的解析式;
②D(﹣4,0)是x轴上的定点,当抛物线向左平移到某个位置时,四边形A'B'CD的周长最短,求此时抛物线的解析式(直接写出结果即可).
【答案】(I)y=;(0,0);2;(II)P(2,﹣2);Q(,0);(III)①y=(x+)2;②y=(x+)2.
【解析】
(I)把(﹣4,8)代入y=ax2可求得a的值,可得抛物线的解析式,这条抛物线的顶点是原点,把x=2代入所求的抛物线解析式,可得n的值;
(II)求得AP与x轴的交点即为Q的坐标;
(III)①先计算CQ的长,可知平移的距离和方向,用顶点式设出相应的函数解析式,把新顶点坐标代入即可;
②左右平移时,使A′D+DB′′最短即可,那么作出点A′关于x轴对称点的坐标为A′′,得到直线A′′B′′的解析式,将点D的坐标代入,可得b的值,同理用顶点式设出相应的函数解析式,把新顶点坐标代入即可.
解:(I)将点A(﹣4,8)的坐标代入y=ax2,
解得a=,
∴抛物线的解析式是y=,顶点坐标是(0,0),
将点B(2,n)的坐标代入y=x2,得n==2;
(II)由(I)知:点B的坐标为(2,2),
则点B关于x轴对称点P的坐标为(2,﹣2),
如图1,连接AP与x轴的交点为Q,此时AQ+BQ最小,
设直线AP的解析式为y=kx+b,,
解得:
∴直线AP的解析式是y=﹣x+,
令y=0,得x=,
即所求点Q的坐标是(,0);
(III)①∵点C(﹣2,0),点Q的坐标是( ,0)
∴CQ=﹣(﹣2)=,
故将抛物线y=x2向左平移个单位时,A′C+CB′最短,
此时抛物线的函数解析式为y=(x+)2;
②左右平移抛物线y=x2,
∵线段A′B′和CD的长是定值,
∴要使四边形A′B′CD的周长最短,只要使A′D+CB′最短;
第一种情况:如果将抛物线向右平移,显然有A′D+CB′在增大,
∴不存在某个位置,使四边形A′B′CD的周长最短;
第二种情况:设抛物线向左平移了b个单位,如图2,
则点A′和点B′的坐标分别为A′(﹣4﹣b,8)和B′(2﹣b,2).
∵CD=2,
∴将点B′向左平移2个单位得B′′(﹣b,2),要使A′D+CB′最短,只要使A′D+DB′′最短,
∵点A′关于x轴对称点的坐标为A′′(﹣4﹣b,﹣8),
由A'和B'两点的坐标得:直线A′′B′′的解析式为y=x+b+2.
要使A′D+DB′′最短,点D应在直线A′′B′′上,
将点D(﹣4,0)代入直线A′′B′′的解析式,解得b=.
∴将抛物线向左平移时,存在某个位置,使四边形A′B′CD的周长最短,
此时抛物线的函数解析式为y=(x+)2.