题目内容
【题目】如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A,B两点,抛物线y=﹣x2+bx+c过A,B两点,点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.
(1)求抛物线的解析式.
(2)求△ABE面积的最大值.
(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求出点D坐标;若不存在,说明理由.
【答案】
(1)解:在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,
∴A(﹣4,0),B(0,4).
∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,
∴ ,
解得:b=﹣3,c=4,
∴抛物线的解析式为:y=﹣x2﹣3x+4
(2)解:如图,连接AE、过点E作EF⊥y轴于点F,
设点C坐标为(m,0)(m<0),则点E坐标为(m,﹣m2﹣3m+4),
则OC=﹣m,OF=﹣m2﹣3m+4,
∵OA=OB=4,
∴BF=﹣m2﹣3m,
则S△ABE=S梯形AOFE﹣S△AOB﹣S△BEF
= ×(﹣m+4)(﹣m2﹣3m+4)﹣ ×4×4﹣ ×(﹣m)×(﹣m2﹣3m).
=﹣2m2﹣8m
=﹣2(m+2)2+8,
∵﹣4<m<0,
∴当m=﹣2时,S取得最大值,最大值为8.
即△ABE面积的最大值为8
(3)解:设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD= OC=﹣ m,
则D(m,4+m).
∵△ACD为等腰直角三角形,△DBE和△DAC相似
∴△DBE必为等腰直角三角形.
i)若∠BED=90°,则BE=DE,
∵BE=OC=﹣m,
∴DE=BE=﹣m,
∴CE=4+m﹣m=4,
∴E(m,4).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,
∴D(﹣3,1);
ii)若∠EBD=90°,则BE=BD=﹣ m,
在等腰直角三角形EBD中,DE= BD=﹣2m,
∴CE=4+m﹣2m=4﹣m,
∴E(m,4﹣m).
∵点E在抛物线y=﹣x2﹣3x+4上,
∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,
∴D(﹣2,2).
综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2)
【解析】(1)根据线y=x+4与坐标轴分别交于A,B两点,得到A,B的坐标,用待定系数法求出抛物线的解析式;(2)根据题意求出点C、点E的坐标,得到S△ABE=S梯形AOFE﹣S△AOB﹣S△BEF,求出当m=﹣2时,S取得最大值,最大值为8,得到△ABE面积的最大值为8;(3)根据题意求出点C坐标与点D坐标的关系,得到E点坐标,由点E在抛物线上,求出D点坐标,得到存在点D,使得△DBE和△DAC相似.
【考点精析】本题主要考查了相似三角形的判定的相关知识点,需要掌握相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)才能正确解答此题.