题目内容
【题目】如图,在直角坐标系中,直线y1=2x﹣2与坐标轴交于A,B两点,与双曲线y2=(x>0)交于点C,过点C作CD⊥x轴,垂足为D,且OA=AD,则以下结论:①当x>0时,y1随x的增大而增大,y2随x的增大而减小;②;③当0<x<2时,y1<y2;④如图,当x=4时,EF=4.其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】对于直线y=2x2,
令x=0,得到y=2;令y=0,得到x=1,
∴A(1,0),B(0,2),即OA=1,OB=2,
在△OBA和△CDA中, ,
∴△OBA≌△CDA(AAS),
∴CD=OB=2,OA=AD=1,
∴C(2,2),
当x>0时,y随x的增大而增大,y随x的增大而减小;故①正确;
把C坐标代入反比例解析式得:k=4,故②正确;
由函数图象得:当0<x<2时,y<y,选项③正确;
当x=4时,y=6,y=1,即EF=61=5,选项④错误;
故选C
练习册系列答案
相关题目
【题目】某市对即将参加中考的4000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和不完整的频数分布直方图.请根据图表信息回答下列问题:
初中毕业生视力抽样调查频数分布表
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查样本容量为 ;
(2)在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;
(3)若视力在4.9以上(含4.9)均属标准视力,根据上述信息估计全区初中毕业生中达到标准视力的学生约有多少人?