题目内容
【题目】如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
【答案】(1)证明见解析;(2)AP=2;(3)P在B点,C点,或在CP=4(-1)处,△ADQ是等腰三角形.
【解析】
试题分析:(1)可由SAS求得△ADQ≌△ABQ;
(2)过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF,若△ADQ的面积是正方形ABCD面积的,则有S△ADQ=ADQE=S正方形ABCD,求得OE的值,再利用△DEQ∽△DAP有,解得AP值;
(3)点P运动时,△ADQ恰为等腰三角形的情况有三种:有QD=QA或DA=DQ或AQ=AD.由正方形的性质知,①当点P运动到与点B重合时,QD=QA,此时△ADQ是等腰三角形,②当点P与点C重合时,点Q与点C也重合,此时DA=DQ,△ADQ是等腰三角形,③当AD=AQ=4时,有CP=CQ,CP=AC-AD而由正方形的对角线的性质得到CP的值.
试题解析:(1)在正方形ABCD中,
无论点P运动到AB上何处时,都有
AD=AB,∠DAQ=∠BAQ,AQ=AQ,
∴△ADQ≌△ABQ;
(2)△ADQ的面积恰好是正方形ABCD面积的时,
过点Q作QE⊥AD于E,QF⊥AB于F,则QE=QF,
∵在边长为4的正方形ABCD中,
∴S正方形ABCD=16,
∴AD×QE=S正方形ABCD=×16=,
∴QE=,
∵EQ∥AP,
∴△DEQ∽△DAP,
∴,即,
解得AP=2,
∴AP=2时,△ADQ的面积是正方形ABCD面积的;
(3)若△ADQ是等腰三角形,则有QD=QA或DA=DQ或AQ=AD,
①当AD=DQ时,则∠DQA=∠DAQ=45°
∴∠ADQ=90°,P为C点,
②当AQ=DQ时,则∠DAQ=∠ADQ=45°,
∴∠AQD=90°,P为B,
③AD=AQ(P在BC上),
∴CQ=AC-AQ=BC-BC=(-1)BC
∵AD∥BC
∴,即可得=1,
∴CP=CQ=(-1)BC=4(-1)
综上,P在B点,C点,或在CP=4(-1)处,△ADQ是等腰三角形.