题目内容
【题目】解答下列问题:
在一个不透明的口袋中有个红球和若干个白球,这些球除颜色不同外其他都相同,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下颜色,再把它放回袋中,不断重复上述过程,实验总共摸了次,其中有次摸到了红球,那么估计口袋中有白球多少个?
请思考并作答:
在一个不透明的口袋里装有若干个形状、大小完全相同的白球,在不允许将球倒出来的情况下,如何估计白球的个数(可以借助其它工具及用品)?写出解决问题的主要步骤及估算方法,并求出结果(其中所需数量用、、等字母表示).
【答案】口袋中有白球个;白球的个数为.
【解析】
(1)根据口袋中有10个红球,利用小球在总数中所占比例得出与实验比例应该相等求出即可;
(2)利用做标记的方法,得出带标记的小球在总数中所占比例应该等于实验比例求出即可.
(1)∵实验总共摸了200次,其中有50次摸到了红球.
∵口袋中有10个红球,假设有x个白球,∴,解得:x=30,∴口袋中有白球30个;
(2)可以拿出a个标上记号,然后搅匀后再拿出b个,带记号的有c个,即可估计白球的个数.
设球的总个数为x,,∴x=,∴白球的个数为.
练习册系列答案
相关题目