ÌâÄ¿ÄÚÈÝ
ÒÑÖª£ºÔÚÌÝÐÎABCDÖУ¬AD¡ÎBC£¬AB=AD=DC=5£¬cos¡ÏABC=
£¬µãEÊÇAB±ßµÄÖе㣬µãFÊÇÉäÏßBCÉϵÄÒ»¶¯µã£¬Á¬½ÓBD¡¢DF£®
£¨1£©Èçͼ1£¬µ±DF¡ÍBCʱ£¬Çótan¡ÏABD£»
£¨2£©Èçͼ2£¬µ±µãFÔÚBCµÄÑÓ³¤ÏßÉÏʱ£¬Á¬½ÓEF£¬½»DC±ßÓÚµãG£¬ÉèCF=m£¬ÊÔÇóÏ߶ÎDG£¨Óú¬mµÄ´úÊýʽ±íʾ£©£»
£¨3£©ÉèMÊDZßDCÉÏÒ»µã£¬ÇÒ5DM=8AE£¬Á¬½ÓAM£¬Óë¶Ô½ÇÏßBDÏཻÓÚµãN£¬Èô¡÷BDF¡×¡÷ADN£¬ÇëÇóÏ߶ÎCF£®
3 | 5 |
£¨1£©Èçͼ1£¬µ±DF¡ÍBCʱ£¬Çótan¡ÏABD£»
£¨2£©Èçͼ2£¬µ±µãFÔÚBCµÄÑÓ³¤ÏßÉÏʱ£¬Á¬½ÓEF£¬½»DC±ßÓÚµãG£¬ÉèCF=m£¬ÊÔÇóÏ߶ÎDG£¨Óú¬mµÄ´úÊýʽ±íʾ£©£»
£¨3£©ÉèMÊDZßDCÉÏÒ»µã£¬ÇÒ5DM=8AE£¬Á¬½ÓAM£¬Óë¶Ô½ÇÏßBDÏཻÓÚµãN£¬Èô¡÷BDF¡×¡÷ADN£¬ÇëÇóÏ߶ÎCF£®
·ÖÎö£º£¨1£©Ïȸù¾ÝµÈµ×¶ÔµÈ½Ç£¬Æ½ÐÐÏßµÄÐÔÖʼ°Èý½Çº¯ÊýµÄ֪ʶ¼´¿ÉÇó³ötan¡ÏABD£»
£¨2£©¹ýµãE×öEN¡ÍBC£¬¹ýµãG×öGM¡ÍBC£¬¹ýµãA×öAP¡ÍBC£¬¹ýµãD×öDQ¡ÍBC£¬¸ù¾ÝƽÐÐÏßµÄÅж¨ºÍÏàËÆÈý½ÇÐεÄÐÔÖʼ´¿ÉÇó³öÏ߶ÎDG£»
£¨3£©¹ýµãA×öAH¡ÍBCÓÚµãH£¬ÒÔHCΪxÖᣬHAΪyÖὨÁ¢Ö±½Ç×ø±êϵ£¬¹ýµãM×öMP¡ÍBCÓÚµãP£¬¹ýµãD×öDQ¡ÍBCÓÚµãQ£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʽáºÏÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇó½â£®
£¨2£©¹ýµãE×öEN¡ÍBC£¬¹ýµãG×öGM¡ÍBC£¬¹ýµãA×öAP¡ÍBC£¬¹ýµãD×öDQ¡ÍBC£¬¸ù¾ÝƽÐÐÏßµÄÅж¨ºÍÏàËÆÈý½ÇÐεÄÐÔÖʼ´¿ÉÇó³öÏ߶ÎDG£»
£¨3£©¹ýµãA×öAH¡ÍBCÓÚµãH£¬ÒÔHCΪxÖᣬHAΪyÖὨÁ¢Ö±½Ç×ø±êϵ£¬¹ýµãM×öMP¡ÍBCÓÚµãP£¬¹ýµãD×öDQ¡ÍBCÓÚµãQ£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʽáºÏÈý½ÇÐεÄÃæ»ý¹«Ê½¼´¿ÉÇó½â£®
½â´ð£º½â£º£¨1£©¡ßAB=AD£¬
¡à¡ÏABD=¡ÏADB£¬
¡ßAD¡ÎBC£¬
¡à¡ÏADB=¡ÏDBC£¬
¡à¡ÏABD=¡ÏDBC£¬
tan¡ÏABD=tan£¨
¡ÏABC£©=
=
£»
£¨2£©¹ýµãE×öEN¡ÍBC£¬¹ýµãG×öGM¡ÍBC£¬¹ýµãA×öAP¡ÍBC£¬¹ýµãD×öDQ¡ÍBC
ËùÒÔEN¡ÎGM¡ÎAP¡ÎQD
ËùÒÔGM£ºEN=FM£ºFN£¬
ÆäÖÐEN=
AP=
DQ£¬
Ôò2GM£ºDQ=FM£ºFN
GM£ºDQ=CG£ºCD=CM£ºCQ
Ôò2CM£ºCQ=FM£ºFN=£¨FC+CM£©£º£¨BF-BN£©=£¨m+CM£©£º£¨11+m-
£©=2CM£ºCQ=2CM£º3
½âµÃCM=
£¬
CG£ºCD=CM£ºCQ
Ôò£¨CD-DG£©£ºCD=CM£ºCQ
¼´£¨5-DG£©£º5=
£º3£¬
½âµÃDG=
£»
£¨3£©¹ýµãA×öAH¡ÍBCÓÚµãH£¬ÒÔHCΪxÖᣬHAΪyÖὨÁ¢Ö±½Ç×ø±êϵ¹ýµãM×öMP¡ÍBCÓÚµãP£¬¹ýµãD×öDQ¡ÍBCÓÚµãQ
ÔòCP£ºCQ=MP£ºDQ=CM£ºCD
5DM=8AE=8¡Á5¡Â2=20£¬DM=4£¬
ÔòCP£ºCQ=MP£ºDQ=£¨5-4£©£º5
ÔòCP=
£¬MP=
£¬
ÔòµãAΪ£¨0£¬4£©£¬µãMΪ£¨
£¬
£©£¬µãBΪ£¨-3£¬0£©£¬µãDΪ£¨5£¬4£©
Ö±ÏßAMΪy=-
x+4£¬Ö±ÏßBDΪy=
x+
£¬
Á½Ö±ÏßÏཻÓÚµãN£¬µãNΪ£¨
£¬
£©
¡÷ANDÖУ¬µ×±ßAD=5£¬h=4-
=
£¬
S=0.5¡Á5¡Á
=
=S¡÷BDF=0.5¡Á4BF
BF=
£¬
CF=BC-BF=3+5+3-
=
£®
¡à¡ÏABD=¡ÏADB£¬
¡ßAD¡ÎBC£¬
¡à¡ÏADB=¡ÏDBC£¬
¡à¡ÏABD=¡ÏDBC£¬
tan¡ÏABD=tan£¨
1 |
2 |
|
1 |
2 |
£¨2£©¹ýµãE×öEN¡ÍBC£¬¹ýµãG×öGM¡ÍBC£¬¹ýµãA×öAP¡ÍBC£¬¹ýµãD×öDQ¡ÍBC
ËùÒÔEN¡ÎGM¡ÎAP¡ÎQD
ËùÒÔGM£ºEN=FM£ºFN£¬
ÆäÖÐEN=
1 |
2 |
1 |
2 |
Ôò2GM£ºDQ=FM£ºFN
GM£ºDQ=CG£ºCD=CM£ºCQ
Ôò2CM£ºCQ=FM£ºFN=£¨FC+CM£©£º£¨BF-BN£©=£¨m+CM£©£º£¨11+m-
3 |
2 |
½âµÃCM=
3m |
16+2m |
CG£ºCD=CM£ºCQ
Ôò£¨CD-DG£©£ºCD=CM£ºCQ
¼´£¨5-DG£©£º5=
3m |
16+2m |
½âµÃDG=
5(16+m) |
16+2m |
£¨3£©¹ýµãA×öAH¡ÍBCÓÚµãH£¬ÒÔHCΪxÖᣬHAΪyÖὨÁ¢Ö±½Ç×ø±êϵ¹ýµãM×öMP¡ÍBCÓÚµãP£¬¹ýµãD×öDQ¡ÍBCÓÚµãQ
ÔòCP£ºCQ=MP£ºDQ=CM£ºCD
5DM=8AE=8¡Á5¡Â2=20£¬DM=4£¬
ÔòCP£ºCQ=MP£ºDQ=£¨5-4£©£º5
ÔòCP=
3 |
5 |
4 |
5 |
ÔòµãAΪ£¨0£¬4£©£¬µãMΪ£¨
37 |
5 |
4 |
5 |
Ö±ÏßAMΪy=-
16 |
37 |
1 |
2 |
3 |
2 |
Á½Ö±ÏßÏཻÓÚµãN£¬µãNΪ£¨
185 |
69 |
196 |
69 |
¡÷ANDÖУ¬µ×±ßAD=5£¬h=4-
196 |
69 |
80 |
69 |
S=0.5¡Á5¡Á
80 |
69 |
200 |
69 |
BF=
100 |
69 |
CF=BC-BF=3+5+3-
100 |
69 |
659 |
69 |
µãÆÀ£º¿¼²éÁËÏàËÆÐÎ×ÛºÏÌ⣬±¾ÌâÉæ¼°µÄ֪ʶµãÓеÈÑüÈý½ÇÐεÄÐÔÖÊ£¬Æ½ÐÐÏßµÄÐÔÖÊ£¬Èý½Çº¯Êý£¬ÏàËÆÈý½ÇÐεÄÐÔÖʺÍÈý½ÇÐεÄÃæ»ý£¬×ÛºÏÐÔ½ÏÇ¿£¬ÓÐÒ»¶¨µÄÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿