题目内容

【题目】三个小球分别标有﹣2,0,1三个数,这三个球除了标的数不同外,其余均相同,将小球放入一个不透明的布袋中搅匀.
(1)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,再记下小球上所标之数,求两次记下之数的和大于0的概率.(请用“画树状图”或“列表”等方法给出分析过程,并求出结果)
(2)从布袋中任意摸出一个小球,将小球上所标之数记下,然后将小球放回袋中,搅匀后再任意摸出一个小球,将小球上所标之数再记下,…,这样一共摸了13次.若记下的13个数之和等于﹣4,平方和等于14.求:这13次摸球中,摸到球上所标之数是0的次数.

【答案】
(1)解:根据题意画出树状图如下:

所有等可能的情况数有9种,其中两次记下之数的和大于0的情况有3种,

则P= =


(2)解:设摸出﹣2、0、1的次数分别为x、y、z,

由题意得,

③﹣②得,6x=18,

解得x=3,

把x=3代入②得,﹣2×3+z=﹣4,

解得z=2,

把x=3,z=2代入①得,y=8,

所以,方程组的解是

故摸到球上所标之数是0的次数为8.


【解析】(1)根据题意画出树状图,然后根据概率公式列式计算即可得解;(2)设摸出﹣2、0、1的次数分别为x、y、z,根据摸出的次数、13个是的和、平方和列出三元一次方程组,然后求解即可.
【考点精析】通过灵活运用列表法与树状图法,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网