题目内容
【题目】如图,在正五边形ABCDE中,对角线AD,AC与EB分别相交于点M,N.下列结论错误的是( )
A.四边形EDCN是菱形
B.四边形MNCD是等腰梯形
C.△AEM与△CBN相似
D.△AEN与△EDM全等
【答案】C
【解析】解:∵在正五边形ABCDE中, ∴AB=BC=CD=DE=AE,BE∥CD,AD∥BC,AC∥DE,
∴四边形EDCN是平行四边形,
∴EDCN是菱形;故A正确;
同理:四边形BCDM是菱形,
∴CN=DE,DM=BC,
∴CN=DM,
∴四边形MNCD是等腰梯形,故B正确;
∴EN=ED=DM=AE=CN=BM=CD,
∵AN=AC﹣CN,EM=BE﹣BM,
∵BE=AC,
∴△AEN≌△EDM(SSS),故D正确.
故选:C.
【考点精析】关于本题考查的菱形的判定方法和等腰梯形的判定,需要了解任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形.已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形;两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形才能得出正确答案.
练习册系列答案
相关题目