题目内容

【题目】一只不透明的袋子中,装有三个分别标记为“1”、“2”、“3”的球,这三个球除了标记不同外,其余均相同.搅匀后,从中摸出一个球,记录球上的标记后放回袋中并搅匀,再从中摸出一个球,再次记录球上的标记.
(1)请列出上述实验中所记录球上标记的所有可能的结果;
(2)求两次记录球上标记均为“1”的概率.

【答案】
(1)解:列表如下:

结果

1

2

3

1

(1,1)

(1,2)

(1,3)

2

(2,1)

(2,2)

(2,3)

3

(3,1)

(3,2)

(3,3)


(2)解:在这种情况下,共包含9种结果,它们是等可能的所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A)的结果只有一种,所以P(A)=

【解析】根据列表得到九种结果,由共包含9种结果,它们是等可能的所有的结果中,满足“两次记录球上标记均为‘1’”(记为事件A)的结果只有一种.
【考点精析】利用随机事件对题目进行判断即可得到答案,需要熟知在条件S下,一定会发生的事件,叫相对于条件S的必然事件;在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;在条件S下可能发生也可能不发生的事件,叫相对于S的随机事件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网