题目内容

【题目】如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x(2<x<4).
(1)当x= 时,求弦PA、PB的长度;
(2)当x为何值时,PDCD的值最大?最大值是多少?

【答案】
(1)解:∵⊙O与直线l相切于点A,且AB为⊙O的直径,

∴AB⊥l,又∵PC⊥l,

∴AB∥PC,

∴∠CPA=∠PAB,

∵AB是⊙O的直径,

∴∠APB=90°,又PC⊥l,

∴∠PCA=∠APB=90°,

∴△PCA∽△APB,

,即PA2=PCAB,

∵PC= ,AB=4,

∴PA= =

∴Rt△APB中,AB=4,PA=

由勾股定理得:PB= =


(2)解:过O作OE⊥PD,垂足为E,

∵PD是⊙O的弦,OE⊥PD,

∴PE=ED,

又∵∠CEO=∠ECA=∠OAC=90°,

∴四边形OACE为矩形,

∴CE=OA=2,又PC=x,

∴PE=ED=PC﹣CE=x﹣2,

∴PD=2(x﹣2),

∴CD=PC﹣PD=x﹣2(x﹣2)=x﹣2x+4=4﹣x,

∴PDCD=2(x﹣2)(4﹣x)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,

∵2<x<4,

∴当x=3时,PDCD的值最大,最大值是2.


【解析】(1)由直线l与圆相切于点A,且AB为圆的直径,根据切线的性质得到AB垂直于直线l,又PC垂直于直线l,根据垂直于同一条直线的两直线平行,得到AB与PC平行,根据两直线平行内错角相等得到一对内错角相等,再由一对直角相等,利用两对对应角相等的两三角形相似可得出△PCA与△PAB相似,由相似得比例,将PC及直径AB的长代入求出PA的长,在直角三角形PAB中,由AB及PA的长,利用勾股定理即可求出PB的长;(2)过O作OE垂直于PD,与PD交于点E,由垂径定理得到E为PD的中点,再由三个角为直角的四边形为矩形得到OACE为矩形,根据矩形的对边相等,可得出EC=OA=2,用PC﹣EC的长表示出PE,根据PD=2PE表示出PD,再由PC﹣PD表示出CD,代入所求的式子中,整理后得到关于x的二次函数,配方后根据自变量x的范围,利用二次函数的性质即可求出所求式子的最大值及此时x的取值.
【考点精析】通过灵活运用二次函数的最值和勾股定理的概念,掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网