题目内容

【题目】如图,已知第一象限内的图象是反比例函数y= 图象的一个分支,第二象限内的图象是反比例函数y=﹣ 图象的一个分支,在x轴的上方有一条平行于x轴的直线l与它们分别交于点A、B,过点A、B作x轴的垂线,垂足分别为C、D.若四边形ABCD的周长为8且AB<AC,则点A的坐标为

【答案】( ,3)
【解析】解:点A在反比例函数y= 图象上,设A点坐标为(a, ),
∵AB平行于x轴,
∴点B的纵坐标为
而点B在反比例函数y=﹣ 图象上,
∴B点的横坐标=﹣2×a=﹣2a,即B点坐标为(﹣2a, ),
∴AB=a﹣(﹣2a)=3a,AC=
∵四边形ABCD的周长为8,而四边形ABCD为矩形,
∴AB+AC=4,即3a+ =4,
整理得,3a2﹣4a+1=0,(3a﹣1)(a﹣1)=0,
∴a1= ,a2=1,
而AB<AC,
∴a=
∴A点坐标为( ,3).
所以答案是:( ,3).
【考点精析】解答此题的关键在于理解反比例函数的图象的相关知识,掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点,以及对反比例函数的性质的理解,了解性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网