题目内容
【题目】如图,在平面直角坐标系中,直线l的表达式是,它与两坐标轴分别交于C、D两点,且∠OCD=60,设点A的坐标为(m,0),若以A为圆心,2为半径的⊙A与直线l相交于M、N两点,当MN=时,m的值为( )
A.B.C.或D.或
【答案】C
【解析】
根据题意先求得、的长,分两种情况讨论:①当点在直线l的左侧时,利用勾股定理求得,利用锐角三角函数求得,即可求得答案;②当点在直线l的右侧时,同理可求得答案.
令,则,点D 的坐标为,
∵∠OCD=60,
∴,
分两种情况讨论:
①当点在直线l的左侧时:如图,
过A作AG⊥CD于G,
∵,MN=,
∴,
∴,
在中,∠ACG=60,
∴,
∴,
∴,
②当点在直线l的右侧时:如图,
过A作AG⊥直线l于G,
∵,MN=,
∴,
∴,
在中,∠ACG=60,
∴,
∴,
∴,
综上:m的值为:或.
故选:C.
【题目】某公司需招聘一名员工,对应聘者甲、乙、丙、丁从笔试、面试两个方面进行量化考核.甲、乙、丙、丁两项得分如下表:(单位:分)
甲 | 乙 | 丙 | 丁 | |
笔试 | ||||
面试 |
(1)这名选手笔试成绩的中位数是____________分,面试的众数是_____________分;
(2)该公司规定:笔试、面试分别按,的比例计总分,请比较甲、乙的总分的大小.
【题目】我市雷雷服饰有限公司生产了一款夏季服装,通过实验商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量(百件)与时间(为整数,单位:天)的部分对应值如下表所示;网上商店的日销售量(百件)与时间(为整数,单位:天)的关系如下图所示.
时间 (天) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
日销售量 (百件) | 0 | 25 | 40 | 45 | 40 | 25 | 0 |
(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映与 的变化规律,并求出与的函数关系式及自变量的取值范围;
(2)求与的函数关系式,并写出自变量的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为(百件),求与的函数关系式;当为何值时,日销售总量达到最大,并求出此时的最大值.