题目内容
【题目】如图是二次函数的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(,y1),(,y2)是抛物线上两点,则y1<y2,其中正确的结论有( )个
A.1B.2C.3D.4
【答案】A
【解析】
①由抛物线的开口方向、对称轴即与y轴交点的位置,可得出a<0、b>0、c>0,进而即可得出abc<0,结论①错误;②由抛物线的对称轴为直线x=1,可得出2a+b=0,结论②正确;③由抛物线的对称性可得出当x=2时y>0,进而可得出4a+2b+c>0,结论③错误;④找出两点离对称轴的距离,比较后结合函数图象可得出y1=y2,结论④错误.综上即可得出结论.
解:①∵抛物线开口向下,对称轴为直线x=1,与y轴交于正半轴,
∴a<0,=1,c>0,
∴b=-2a>0,
∴abc<0,结论①错误;
②抛物线对称轴为直线x=1,
∴=1,
∴b=-2a,
∴2a+b=0,结论②正确;
③∵抛物线的对称轴为直线x=1,与x轴的一个交点坐标是(-1,0),
∴另一个交点坐标是(3,0),
∴当x=2时,y>0,
∴4a+2b+c>0,结论③错误;
④=,,
∵抛物线的对称轴为直线x=1,抛物线开口向下,
∴y1=y2,结论④错误;
综上所述:正确的结论有②,1个,
故选择:A.
练习册系列答案
相关题目
【题目】某校选拔射击运动员参加比赛,甲、乙两人在相同的条件下连续射靶各次,命中的环数(均为不大于10的正整数)如表:
次数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
甲 | ||||||||||
乙 |
(1)当为何值时,选派乙去参加比赛更合适,请说明理由;
(2)若乙最后两次射靶均命中环,则选派谁去参加比赛更合适?请说明理由.