题目内容
【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D在AB上,以BD为直径的⊙O切AC于点E,连接DE并延长,交BC的延长线于点F.
(1)求证:△BDF是等边三角形;
(2)连接AF、DC,若BC=3,写出求四边形AFCD面积的思路.
【答案】(1)证明见解析;(2)思路见解析.
【解析】试题分析:(1)连接OE,因AC切⊙O于点E,根据切线的性质可得∠OEA=90° ;再由∠A=30°,∠ACB=90°,根据三角形的内角和定理可得∠AOE=60°,∠B=60°因OD=OE,可得∠ODE=∠OED=60°,所以∠F=∠B=∠ODE,即可判断△BDF是等边三角形 ;(2)如图,作DH⊥AC于点H,求四边形AFCD的面积思路有以下几步:①由∠ACB=90°,∠BAC=30°,BC=3,可求AB,AC的长;②由∠AEO=90°,∠OAE=30°,可知AO=2OE,可求AD,DB,DH的长; ③由(1)可知BF=BD,可求CF的长; ④由AC,DH,CF的长可求四边形AFCD的面积.
试题解析:
(1)证明:连接OE.
∵AC切⊙O于点E,
∴.
∵, ,
∴, .
∵,
∴.
∴.
∴△BDF是等边三角形.
(2)如图,作DH⊥AC于点H.
①由∠ACB=90°,∠BAC=30°,BC=3,可求AB,AC的长;
②由∠AEO=90°,∠OAE=30°,可知AO=2OE,可求AD,DB,DH的长;
③由(1)可知BF=BD,可求CF的长;
④由AC,DH,CF的长可求四边形AFCD的面积.
练习册系列答案
相关题目