题目内容
【题目】如图是二次函数y=a(x+1)2+2的图象的一部分,根据图象回答下列问题:
(1)抛物线与x轴的一个交点A的坐标是 ,则抛物线与x轴的另一个交点B的坐标是 ;
(2)确定a的值;
(3)设抛物线的顶点是P,试求△PAB的面积.
【答案】(1)(-3,0),(1,0) ;(2) a=- ;(3)4.
【解析】试题分析:(1)由图象可求得A点的坐标,由解析式可求得抛物线的对称轴方程,利用图象的对称性可求得B点坐标;
(2)把B点坐标代入抛物线解析式可求得a的值;
(3)由抛物线解析式可求得P点坐标,再结合A、B坐标可求得AB的值,则可求得△PAB的面积.
试题解析:(1)由图象可知A点坐标为(3,0),
∵y=a(x+1)2+2,
∴抛物线对称轴方程为x=1,
∵A、B两点关于对称轴对称,
∴B的坐标为(1,0),
故答案为:(3,0);(1,0);
(2)将(1,0)代入y=a(x+1)2+2,
可得0=4a+2,解得a=- ;
(3)∵y=a(x+1)2+2,
∴抛物线的顶点坐标是(-1,2),
∵A(-3,0),B(1,0),
∴AB=1-(-3)=4,
∴S△PAB=×4×2=4.
练习册系列答案
相关题目