题目内容
【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+
)2,善于思考的小明进行了以下探索:设a+b
=(m+n
)2(其中a,b,m,n均为正整数),则有a+b
=m2+2n2+2
mn,∴a=m2+2n2,b=2mn.
这样小明就找到了一种把a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)当a,b,m,n均为正整数时,若a+b=(m+n
)2,用含m,n的式子分别表示a,b,得a= ,b= ;
(2)利用所探索的结论,找一组正整数a,b,m,n填空:4+2 =(1+ )2;(答案不唯一)
(3)若a+4=(m+n
)2,且a,m,n均为正整数,求a的值.
【答案】(1)m2+3n2,2mn;(2),
(答案不唯一);(3)7或13.
【解析】
(1)利用完全平方公式展开得到(m+n)2=m2+3n2+2
mn,从而可用m、n表示a、b;
(2)取m=2,n=1,则计算对应的a、b的值,然后填空即可;
(3)利用a=m2+3n2,2mn=4和a、m、n均为正整数可先确定m、n的值,然后计算对应的a的值.
解:(1)(m+n)2=m2+3n2+2
mn,∴a=m2+3n2,b=2mn,
故答案为:m2+3n2,2mn;
(2)取m=2,n=1,则a=7,b=4,∴7+4=(2+
)2,
故答案为:,
(答案不唯一);
(3)a=m2+3n2,2mn=4,
∵a、m、n均为正整数,
∴m=2,n=1或m=1,n=2,
当m=2,n=1时,a=4+3=7,
当m=1,n=2时,a=1+3×4=13,
∴a的值为7或13.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目