题目内容
【题目】八年级380名师生参加户外拓展活动,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表
甲种客车 | 乙种客车 | |
载客量(座/辆) | 60 | 45 |
租金(元/辆) | 550 | 450 |
(1)设租用乙种客车x辆,租车总费用为y元求出y(元)与x(辆)之间的函数表达式;
(2)当乙种客车租用多少辆时,能保障所有的师生能参加户外拓展活动且租车费用最少,最少费用是多少元?
【答案】(1)y=-100x+3850;(2)当乙为2辆时,能保障费用最少,最少费用为3650元.
【解析】
(1)y=租甲种车的费用+租乙种车的费用,由题意代入相关数据即可得;
(2)根据题意确定出x的取值范围,再根据一次函数的增减性即可得.
(1)由题意,得
y=550(7-x)+450x,
化简,得y=-100x+3850,
即y(元)与x(辆)之间的函数表达式是y=-100x+3850;
(2)由题意,得45x+60(7﹣x)≥380,解得,x≤(x为自然数),
∵y=-100x+3850中k=-100<0,∴y随着x的增大而减小,
∴x=2时,租车费用最少,最少为:y=-100×2+3850=3650(元),
即当乙种客车有2辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.
练习册系列答案
相关题目