题目内容
已知函数y1=x,y2=x2+bx+c,α,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.(Ⅰ)若α=
1 |
3 |
1 |
2 |
(Ⅱ)在(Ⅰ)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为
1 |
123 |
(Ⅲ)若0<α<β<1,当0<t<1时,试确定T,α,β三者之间的大小关系,并说明理由.
分析:(1)问通过把α=
,β=
分别代入y1-y2=0,确定b,c的值而求得函数y2的解析式;
(2)问关键在于明确|t-T|=
h这一等量关系才能求得t的值;
(3)问难度较大,比较T、α、β的大小需要正确理解0<α<β<1及0<t<1在整式变形中分类应用.
1 |
3 |
1 |
2 |
(2)问关键在于明确|t-T|=
2 |
(3)问难度较大,比较T、α、β的大小需要正确理解0<α<β<1及0<t<1在整式变形中分类应用.
解答:解:(1)∵y1=x,y2=x2+bx+c,y1-y2=0,
∴x2+(b-1)x+c=0.
将α=
,β=
分别代入x2+(b-1)x+c=0,
得(
)2+(b-1)×
+c=0,(
)2+(b-1)×
+c=0,
解得b=
,c=
.
∴函数y2的解析式为y2=x2+
x+
.
(2)由已知得:A(
,
),B(
,
),得AB=
=
,
设△ABM的高为h,
∴S△ABM=
AB•h=
h=
,即
h=
,
根据题意:|t-T|=
h,
由T=t2+
t+
,
得:|-t2+
t-
|=
,
当t2-
t+
=-
时,解得:t1=t2=
;
当t2-
t+
=
时,解得:t3=
,t4=
;
∴t的值为:
,
,
;
(3)由已知,得α=α2+bα+c,β=β2+bβ+c,T=t2+bt+c.
∴T-α=(t-α)(t+α+b);
T-β=(t-β)(t+β+b);
α-β=(α2+bα+c)-(β2+bβ+c),
化简得(α-β)(α+β+b-1)=0.
∵0<α<β<1,得α-β≠0,
∴α+β+b-1=0.
有α+b=1-β>0,β+b=1-α>0.
又∵0<t<1,
∴t+α+b>0,t+β+b>0,
∴当0<t≤a时,T≤α<β;
当α<t≤β时,α<T≤β;
当β<t<1时,α<β<T.
∴x2+(b-1)x+c=0.
将α=
1 |
3 |
1 |
2 |
得(
1 |
3 |
1 |
3 |
1 |
2 |
1 |
2 |
解得b=
1 |
6 |
1 |
6 |
∴函数y2的解析式为y2=x2+
1 |
6 |
1 |
6 |
(2)由已知得:A(
1 |
2 |
1 |
2 |
1 |
3 |
1 |
3 |
(
|
| ||
6 |
设△ABM的高为h,
∴S△ABM=
1 |
2 |
| ||
12 |
1 |
123 |
2 |
1 |
144 |
根据题意:|t-T|=
2 |
由T=t2+
1 |
6 |
1 |
6 |
得:|-t2+
5 |
6 |
1 |
6 |
1 |
144 |
当t2-
5 |
6 |
1 |
6 |
1 |
144 |
5 |
12 |
当t2-
5 |
6 |
1 |
6 |
1 |
144 |
5-
| ||
12 |
5+
| ||
12 |
∴t的值为:
5 |
12 |
5-
| ||
12 |
5+
| ||
12 |
(3)由已知,得α=α2+bα+c,β=β2+bβ+c,T=t2+bt+c.
∴T-α=(t-α)(t+α+b);
T-β=(t-β)(t+β+b);
α-β=(α2+bα+c)-(β2+bβ+c),
化简得(α-β)(α+β+b-1)=0.
∵0<α<β<1,得α-β≠0,
∴α+β+b-1=0.
有α+b=1-β>0,β+b=1-α>0.
又∵0<t<1,
∴t+α+b>0,t+β+b>0,
∴当0<t≤a时,T≤α<β;
当α<t≤β时,α<T≤β;
当β<t<1时,α<β<T.
点评:本题综合考查一元二次方程与一次函数及二次函数的相关知识,一元二次方程与函数相结合的综合问题是初中与高中知识衔接的重点内容.对于这类问题,通常需要学生熟悉掌握方程与函数的概念与性质及两者之间的联系.
练习册系列答案
相关题目