题目内容

【题目】函数 ,则f(x)在[0,k]的最大值h(k)=(
A.2ln2﹣2﹣(ln2)3
B.﹣1
C.2ln2﹣2﹣(ln2)2k
D.(k﹣1)ek﹣k3

【答案】D
【解析】解:f′(x)=xex﹣2kx=x(ex﹣2k), 令f′(x)=0得x=0或x=ln2k,
令g(k)=k﹣ln2k,则g′(k)=1﹣ <0
∴g(k)在( ,1]上是减函数,∴g(k)≥g(1)=1﹣ln2>0,
∴k>ln2k,
∴f(x)在[0,ln2k]上单调递减,在(ln2k,k]上单调递增,
∴f(x)的最大值为f(0)或f(k).
f(k)﹣f(0)=(k﹣1)ek﹣k3+1=(k﹣1)(ek﹣k2﹣k﹣1),
令h(x)=ek﹣k2﹣k﹣1,则h′(k)=ek﹣2k﹣1,h′′(k)=ek﹣2,
令h″(k)=0得k=ln2,
∴h′(k)在( ,ln2)上单调递减,在(ln2,1]上单调递增,
∵h′( )= ﹣2<0,h′(1)=e﹣3<0,
∴h′(k)<0在( ,1]上恒成立,
∴h(k)在( ,1]上是减函数,∴h(k)<h( )= <0,
∴f(k)≥f(0),
∴f(x)的最大值为f(k)=(k﹣1)ek﹣k3
故选D.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网